Algèbre linéaire Exemples

Trouver le rang (uxv)*w=[[a,b,d],[g,h,j],[k,l,n]]
(uxv)w=[abdghjkln](uxv)w=abdghjkln
Étape 1
Déterminez la forme d’échelon en ligne réduite.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multiply each element of R1R1 by 1a1a to make the entry at 1,11,1 a 11.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Multiply each element of R1R1 by 1a1a to make the entry at 1,11,1 a 11.
[aabadaghjkln]⎢ ⎢aabadaghjkln⎥ ⎥
Étape 1.1.2
Simplifiez R1R1.
[1badaghjkln]⎢ ⎢1badaghjkln⎥ ⎥
[1badaghjkln]⎢ ⎢1badaghjkln⎥ ⎥
Étape 1.2
Perform the row operation R2=R2-gR1R2=R2gR1 to make the entry at 2,12,1 a 00.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Perform the row operation R2=R2-gR1R2=R2gR1 to make the entry at 2,12,1 a 00.
[1badag-g1h-gbaj-gdakln]⎢ ⎢1badagg1hgbajgdakln⎥ ⎥
Étape 1.2.2
Simplifiez R2R2.
[1bada0h-bgaj-dgakln]⎢ ⎢1bada0hbgajdgakln⎥ ⎥
[1bada0h-bgaj-dgakln]⎢ ⎢1bada0hbgajdgakln⎥ ⎥
Étape 1.3
Perform the row operation R3=R3-kR1R3=R3kR1 to make the entry at 3,13,1 a 00.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Perform the row operation R3=R3-kR1R3=R3kR1 to make the entry at 3,13,1 a 00.
[1bada0h-bgaj-dgak-k1l-kban-kda]⎢ ⎢ ⎢1bada0hbgajdgakk1lkbankda⎥ ⎥ ⎥
Étape 1.3.2
Simplifiez R3R3.
[1bada0h-bgaj-dga0l-bkan-dka]⎢ ⎢ ⎢1bada0hbgajdga0lbkandka⎥ ⎥ ⎥
[1bada0h-bgaj-dga0l-bkan-dka]⎢ ⎢ ⎢1bada0hbgajdga0lbkandka⎥ ⎥ ⎥
Étape 1.4
Multiply each element of R2R2 by 1h-bga1hbga to make the entry at 2,22,2 a 11.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Multiply each element of R2R2 by 1h-bga1hbga to make the entry at 2,22,2 a 11.
[1bada0h-bgah-bgah-bgaj-dgah-bga0l-bkan-dka]⎢ ⎢ ⎢ ⎢ ⎢1bada0hbgahbgahbgajdgahbga0lbkandka⎥ ⎥ ⎥ ⎥ ⎥
Étape 1.4.2
Simplifiez R2R2.
[1bada01aj-dgah-bg0l-bkan-dka]⎢ ⎢ ⎢1bada01ajdgahbg0lbkandka⎥ ⎥ ⎥
[1bada01aj-dgah-bg0l-bkan-dka]⎢ ⎢ ⎢1bada01ajdgahbg0lbkandka⎥ ⎥ ⎥
Étape 1.5
Perform the row operation R3=R3-(l-bka)R2R3=R3(lbka)R2 to make the entry at 3,23,2 a 00.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Perform the row operation R3=R3-(l-bka)R2R3=R3(lbka)R2 to make the entry at 3,23,2 a 00.
[1bada01aj-dgah-bg0-(l-bka)0l-bka-(l-bka)1n-dka-(l-bka)aj-dgah-bg]⎢ ⎢ ⎢ ⎢1bada01ajdgahbg0(lbka)0lbka(lbka)1ndka(lbka)ajdgahbg⎥ ⎥ ⎥ ⎥
Étape 1.5.2
Simplifiez R3R3.
[1bada01aj-dgah-bg00-dkh-nah+nbg+laj-ldg-bkjah-bg]⎢ ⎢ ⎢ ⎢1bada01ajdgahbg00dkhnah+nbg+lajldgbkjahbg⎥ ⎥ ⎥ ⎥
[1bada01aj-dgah-bg00-dkh-nah+nbg+laj-ldg-bkjah-bg]⎢ ⎢ ⎢ ⎢1bada01ajdgahbg00dkhnah+nbg+lajldgbkjahbg⎥ ⎥ ⎥ ⎥
Étape 1.6
Multiply each element of R3R3 by -ah-bgdkh-nah+nbg+laj-ldg-bkjahbgdkhnah+nbg+lajldgbkj to make the entry at 3,33,3 a 11.
Appuyez ici pour voir plus d’étapes...
Étape 1.6.1
Multiply each element of R3R3 by -ah-bgdkh-nah+nbg+laj-ldg-bkjahbgdkhnah+nbg+lajldgbkj to make the entry at 3,33,3 a 11.
[1bada01aj-dgah-bg-ah-bgdkh-nah+nbg+laj-ldg-bkj0-ah-bgdkh-nah+nbg+laj-ldg-bkj0-ah-bgdkh-nah+nbg+laj-ldg-bkj(-dkh-nah+nbg+laj-ldg-bkjah-bg)]⎢ ⎢ ⎢ ⎢1bada01ajdgahbgahbgdkhnah+nbg+lajldgbkj0ahbgdkhnah+nbg+lajldgbkj0ahbgdkhnah+nbg+lajldgbkj(dkhnah+nbg+lajldgbkjahbg)⎥ ⎥ ⎥ ⎥
Étape 1.6.2
Simplifiez R3R3.
[1bada01aj-dgah-bg001]⎢ ⎢ ⎢1bada01ajdgahbg001⎥ ⎥ ⎥
[1bada01aj-dgah-bg001]⎢ ⎢ ⎢1bada01ajdgahbg001⎥ ⎥ ⎥
Étape 1.7
Perform the row operation R2=R2-aj-dgah-bgR3R2=R2ajdgahbgR3 to make the entry at 2,32,3 a 00.
Appuyez ici pour voir plus d’étapes...
Étape 1.7.1
Perform the row operation R2=R2-aj-dgah-bgR3R2=R2ajdgahbgR3 to make the entry at 2,32,3 a 00.
[1bada0-aj-dgah-bg01-aj-dgah-bg0aj-dgah-bg-aj-dgah-bg1001]⎢ ⎢ ⎢1bada0ajdgahbg01ajdgahbg0ajdgahbgajdgahbg1001⎥ ⎥ ⎥
Étape 1.7.2
Simplifiez R2R2.
[1bada010001]⎢ ⎢1bada010001⎥ ⎥
[1bada010001]⎢ ⎢1bada010001⎥ ⎥
Étape 1.8
Perform the row operation R1=R1-daR3R1=R1daR3 to make the entry at 1,31,3 a 00.
Appuyez ici pour voir plus d’étapes...
Étape 1.8.1
Perform the row operation R1=R1-daR3R1=R1daR3 to make the entry at 1,31,3 a 00.
[1-da0ba-da0da-da1010001]⎢ ⎢1da0bada0dada1010001⎥ ⎥
Étape 1.8.2
Simplifiez R1R1.
[1ba0010001]⎢ ⎢1ba0010001⎥ ⎥
[1ba0010001]⎢ ⎢1ba0010001⎥ ⎥
Étape 1.9
Perform the row operation R1=R1-baR2R1=R1baR2 to make the entry at 1,21,2 a 00.
Appuyez ici pour voir plus d’étapes...
Étape 1.9.1
Perform the row operation R1=R1-baR2R1=R1baR2 to make the entry at 1,21,2 a 00.
[1-ba0ba-ba10-ba0010001]⎢ ⎢1ba0baba10ba0010001⎥ ⎥
Étape 1.9.2
Simplifiez R1R1.
[100010001]100010001
[100010001]100010001
[100010001]100010001
Étape 2
The pivot positions are the locations with the leading 11 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11,a22,a11,a22, and a33a33
Pivot Columns: 1,2,1,2, and 33
Étape 3
The rank is the number of pivot columns.
33
 [x2  12  π  xdx ]  x2  12  π  xdx