Entrer un problème...
Algèbre linéaire Exemples
(uxv)⋅w=[abdghjkln](uxv)⋅w=⎡⎢⎣abdghjkln⎤⎥⎦
Étape 1
Étape 1.1
Multiply each element of R1R1 by 1a1a to make the entry at 1,11,1 a 11.
Étape 1.1.1
Multiply each element of R1R1 by 1a1a to make the entry at 1,11,1 a 11.
[aabadaghjkln]⎡⎢
⎢⎣aabadaghjkln⎤⎥
⎥⎦
Étape 1.1.2
Simplifiez R1R1.
[1badaghjkln]⎡⎢
⎢⎣1badaghjkln⎤⎥
⎥⎦
[1badaghjkln]⎡⎢
⎢⎣1badaghjkln⎤⎥
⎥⎦
Étape 1.2
Perform the row operation R2=R2-gR1R2=R2−gR1 to make the entry at 2,12,1 a 00.
Étape 1.2.1
Perform the row operation R2=R2-gR1R2=R2−gR1 to make the entry at 2,12,1 a 00.
[1badag-g⋅1h-gbaj-gdakln]⎡⎢
⎢⎣1badag−g⋅1h−gbaj−gdakln⎤⎥
⎥⎦
Étape 1.2.2
Simplifiez R2R2.
[1bada0h-bgaj-dgakln]⎡⎢
⎢⎣1bada0h−bgaj−dgakln⎤⎥
⎥⎦
[1bada0h-bgaj-dgakln]⎡⎢
⎢⎣1bada0h−bgaj−dgakln⎤⎥
⎥⎦
Étape 1.3
Perform the row operation R3=R3-kR1R3=R3−kR1 to make the entry at 3,13,1 a 00.
Étape 1.3.1
Perform the row operation R3=R3-kR1R3=R3−kR1 to make the entry at 3,13,1 a 00.
[1bada0h-bgaj-dgak-k⋅1l-kban-kda]⎡⎢
⎢
⎢⎣1bada0h−bgaj−dgak−k⋅1l−kban−kda⎤⎥
⎥
⎥⎦
Étape 1.3.2
Simplifiez R3R3.
[1bada0h-bgaj-dga0l-bkan-dka]⎡⎢
⎢
⎢⎣1bada0h−bgaj−dga0l−bkan−dka⎤⎥
⎥
⎥⎦
[1bada0h-bgaj-dga0l-bkan-dka]⎡⎢
⎢
⎢⎣1bada0h−bgaj−dga0l−bkan−dka⎤⎥
⎥
⎥⎦
Étape 1.4
Multiply each element of R2R2 by 1h-bga1h−bga to make the entry at 2,22,2 a 11.
Étape 1.4.1
Multiply each element of R2R2 by 1h-bga1h−bga to make the entry at 2,22,2 a 11.
[1bada0h-bgah-bgah-bgaj-dgah-bga0l-bkan-dka]⎡⎢
⎢
⎢
⎢
⎢⎣1bada0h−bgah−bgah−bgaj−dgah−bga0l−bkan−dka⎤⎥
⎥
⎥
⎥
⎥⎦
Étape 1.4.2
Simplifiez R2R2.
[1bada01aj-dgah-bg0l-bkan-dka]⎡⎢
⎢
⎢⎣1bada01aj−dgah−bg0l−bkan−dka⎤⎥
⎥
⎥⎦
[1bada01aj-dgah-bg0l-bkan-dka]⎡⎢
⎢
⎢⎣1bada01aj−dgah−bg0l−bkan−dka⎤⎥
⎥
⎥⎦
Étape 1.5
Perform the row operation R3=R3-(l-bka)R2R3=R3−(l−bka)R2 to make the entry at 3,23,2 a 00.
Étape 1.5.1
Perform the row operation R3=R3-(l-bka)R2R3=R3−(l−bka)R2 to make the entry at 3,23,2 a 00.
[1bada01aj-dgah-bg0-(l-bka)⋅0l-bka-(l-bka)⋅1n-dka-(l-bka)aj-dgah-bg]⎡⎢
⎢
⎢
⎢⎣1bada01aj−dgah−bg0−(l−bka)⋅0l−bka−(l−bka)⋅1n−dka−(l−bka)aj−dgah−bg⎤⎥
⎥
⎥
⎥⎦
Étape 1.5.2
Simplifiez R3R3.
[1bada01aj-dgah-bg00-dkh-nah+nbg+laj-ldg-bkjah-bg]⎡⎢
⎢
⎢
⎢⎣1bada01aj−dgah−bg00−dkh−nah+nbg+laj−ldg−bkjah−bg⎤⎥
⎥
⎥
⎥⎦
[1bada01aj-dgah-bg00-dkh-nah+nbg+laj-ldg-bkjah-bg]⎡⎢
⎢
⎢
⎢⎣1bada01aj−dgah−bg00−dkh−nah+nbg+laj−ldg−bkjah−bg⎤⎥
⎥
⎥
⎥⎦
Étape 1.6
Multiply each element of R3R3 by -ah-bgdkh-nah+nbg+laj-ldg-bkj−ah−bgdkh−nah+nbg+laj−ldg−bkj to make the entry at 3,33,3 a 11.
Étape 1.6.1
Multiply each element of R3R3 by -ah-bgdkh-nah+nbg+laj-ldg-bkj−ah−bgdkh−nah+nbg+laj−ldg−bkj to make the entry at 3,33,3 a 11.
[1bada01aj-dgah-bg-ah-bgdkh-nah+nbg+laj-ldg-bkj⋅0-ah-bgdkh-nah+nbg+laj-ldg-bkj⋅0-ah-bgdkh-nah+nbg+laj-ldg-bkj(-dkh-nah+nbg+laj-ldg-bkjah-bg)]⎡⎢
⎢
⎢
⎢⎣1bada01aj−dgah−bg−ah−bgdkh−nah+nbg+laj−ldg−bkj⋅0−ah−bgdkh−nah+nbg+laj−ldg−bkj⋅0−ah−bgdkh−nah+nbg+laj−ldg−bkj(−dkh−nah+nbg+laj−ldg−bkjah−bg)⎤⎥
⎥
⎥
⎥⎦
Étape 1.6.2
Simplifiez R3R3.
[1bada01aj-dgah-bg001]⎡⎢
⎢
⎢⎣1bada01aj−dgah−bg001⎤⎥
⎥
⎥⎦
[1bada01aj-dgah-bg001]⎡⎢
⎢
⎢⎣1bada01aj−dgah−bg001⎤⎥
⎥
⎥⎦
Étape 1.7
Perform the row operation R2=R2-aj-dgah-bgR3R2=R2−aj−dgah−bgR3 to make the entry at 2,32,3 a 00.
Étape 1.7.1
Perform the row operation R2=R2-aj-dgah-bgR3R2=R2−aj−dgah−bgR3 to make the entry at 2,32,3 a 00.
[1bada0-aj-dgah-bg⋅01-aj-dgah-bg⋅0aj-dgah-bg-aj-dgah-bg⋅1001]⎡⎢
⎢
⎢⎣1bada0−aj−dgah−bg⋅01−aj−dgah−bg⋅0aj−dgah−bg−aj−dgah−bg⋅1001⎤⎥
⎥
⎥⎦
Étape 1.7.2
Simplifiez R2R2.
[1bada010001]⎡⎢
⎢⎣1bada010001⎤⎥
⎥⎦
[1bada010001]⎡⎢
⎢⎣1bada010001⎤⎥
⎥⎦
Étape 1.8
Perform the row operation R1=R1-daR3R1=R1−daR3 to make the entry at 1,31,3 a 00.
Étape 1.8.1
Perform the row operation R1=R1-daR3R1=R1−daR3 to make the entry at 1,31,3 a 00.
[1-da⋅0ba-da⋅0da-da⋅1010001]⎡⎢
⎢⎣1−da⋅0ba−da⋅0da−da⋅1010001⎤⎥
⎥⎦
Étape 1.8.2
Simplifiez R1R1.
[1ba0010001]⎡⎢
⎢⎣1ba0010001⎤⎥
⎥⎦
[1ba0010001]⎡⎢
⎢⎣1ba0010001⎤⎥
⎥⎦
Étape 1.9
Perform the row operation R1=R1-baR2R1=R1−baR2 to make the entry at 1,21,2 a 00.
Étape 1.9.1
Perform the row operation R1=R1-baR2R1=R1−baR2 to make the entry at 1,21,2 a 00.
[1-ba⋅0ba-ba⋅10-ba⋅0010001]⎡⎢
⎢⎣1−ba⋅0ba−ba⋅10−ba⋅0010001⎤⎥
⎥⎦
Étape 1.9.2
Simplifiez R1R1.
[100010001]⎡⎢⎣100010001⎤⎥⎦
[100010001]⎡⎢⎣100010001⎤⎥⎦
[100010001]⎡⎢⎣100010001⎤⎥⎦
Étape 2
The pivot positions are the locations with the leading 11 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11,a22,a11,a22, and a33a33
Pivot Columns: 1,2,1,2, and 33
Étape 3
The rank is the number of pivot columns.
33